Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens
نویسندگان
چکیده
As previously reported, normal human monocytes (11) and activated mouse macrophages (9) are able to kill or inhibit intracellular replication of Toxoplasma that are not antibody coated, whereas normal human and mouse macrophages are not (7, 9). Each of these types of mononuclear phagocytes is able to kill antibody-coated Toxoplasma. In our studies, phagocytosis of antibody-coated Toxoplasma stimulated the respiratory burst by each of these types of mononuclear phagocytes, whereas phagocytosis of organisms that were not antibody coated stimulated the respiratory burst only by human monocytes and by activated mouse macrophages. Phagocytosis of Toxoplasma did not inhibit production of reactive oxygen metabolites by normal macrophages; rather, it failed to stimulate their production. Killing of Toxoplasma by monocytes from a child with X-linked chronic granulomatous disease and his heterozygote mother was impaired. Thus, reactive oxygen metabolites, perhaps in conjunction with lysosomal contents, appear to be first-line mechanisms whereby mononuclear phagocytes kill this organism. We were not able to determine the exact mechanisms whereby mononuclear phagocytes inhibit the replication of those Toxoplasma that were not killed, although both oxygen-dependent and other nonlysosomal mechanisms may be involved. The differences we observed in oxidative response to phagocytosis of Toxoplasma appear to be one determinant of the antimicrobial activity of these cells and may account for the ability of some intracellular pathogens to survive within phagocytes. These differences may be membrane related. Further studies of Toxoplasma membranes, phagocyte membrane receptors for Toxoplasma, and membrane-related mechanisms for activation of the respiratory burst are needed to define their true basis.
منابع مشابه
Mycobacterium avium subsp. paratuberculosis induces differential cytosine methylation at miR-21 transcription start site region
Mycobacterium aviumsubspecies paratuberculosis (MAP), as an obligate intracellular bacterium, causes paratuberculosis (Johne’s disease) in ruminants. Plus, MAP has consistently been isolated from Crohn’s disease (CD) lesions in humans; a notion implying possible direct causative ...
متن کاملSusceptibility of leishmania to oxygen intermediates and killing by normal macrophages
This study demonstrates that the promastigote form of virulent Leishmania donovani and Leishmania tropica are both deficient in endogenous enzymatic scavengers of H(2)0(2) (catalase, glutathione peroxidase) and susceptible to low fluxes of H(2)O(2) in a cell-free model. In addition, the killing of promastigotes by H(2)0(2) is markedly enhanced in the presence of a peroxidase and halide. Promast...
متن کاملSurvival of Intracellular Pathogens within Macrophages
Reactive oxygen metabolites produced during phagocytosis are important for the microbicidal activity of granulocytes and probably of monocytes as well (1, 2). Although the role of reactive oxygen metabolites in the microbicidal activity of macrophages is not established, recent studies (3-6) suggest that they may be important because activated macrophages that exhibit enhanced antimicrobial act...
متن کاملBrucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages
Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts’ defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host’s killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defi...
متن کاملCandida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance
Mammalian innate immune cells produce reactive oxygen species (ROS) in the oxidative burst reaction to destroy invading microbial pathogens. Using quantitative real-time ROS assays, we show here that both yeast and filamentous forms of the opportunistic human fungal pathogen Candida albicans trigger ROS production in primary innate immune cells such as macrophages and dendritic cells. Through a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 151 شماره
صفحات -
تاریخ انتشار 1980